Tuesday, May 24, 2016

laser in communication / anil kumar lines

google search:linestelecom/Optical fibers can be used to transmit light and thus information over long ditelestances. Fiber-based systems have largely replaced radio transmitter systems for long-haul optical data transmission. They are widely used for telephony, but also for Internet traffic, long high-speed local area networks (LANs), cable TV (CATV), and increasingly also for shorter distances within buildings. In most cases, silica fibers are used, except for very short distances, where plastic optical fibers can be advantageous.
Compared with systems based on electrical cables, the approach of optical fiber communications (lightwave communications) has advantages, the most important of which are:
See also our useful tutorial "Passive Fiber Optics"! This explains many aspects of fiber optics using interesting simulations.
  • The capacity of fibers for data transmission is huge: a single silica fiber can carry hundreds of thousands of telephone channels, utilizing only a small part of the theoretical capacity. In the last 30 years, the progress concerning transmission capacities of fiber links has been significantly faster than e.g. the progress in the speed or storage capacity of computers.
  • The losses for light propagating in fibers are amazingly small: ≈ 0.2 dB/km for modern single-mode silica fibers, so that many tens of kilometers can be bridged without amplifying the signals.
  • A large number of channels can be reamplified in a single fiber amplifier, if required for very large transmission distances.
  • Due to the huge transmission rate achievable, the cost per transported bit can be extremely low.
  • Compared with electrical cables, fiber-optic cables are very lightweight.
  • Fiber-optic cables are immune to problems that arise with electrical cables, such as ground loops or electromagnetic interference (EMI). Such issues are important, for example, for data links in industrial environments.
Mostly due to their very high data transmission capacity, fiber-optic transmission systems can achieve a much lower cost than systems based on coaxial copper cables, if high data rates are needed. For low data rates, where their full transmission capacity cannot be utilized, fiber-optic systems may have less of an economic advantage, or may even be more expensive (not due to the fibers, but the additional transceivers). The primary reason, however, for the still widespread use of copper cables for the “last mile” (the connection to the homes and offices) is simply that copper cables are already laid out, whereas new digging operations would be required to lay down additional fiber cables.
Fiber communications are already extensively used within metropolitan areas (metro fiber links), and even fiber to the home (FTTH) spreads more and more – particularly in Japan, where private Internet users can already obtain affordable Internet connections with data rates of 100 Mbit/s – well above the performance of current ADSL systems, which use electrical telephone lines. In other countries, one often tries to squeeze out higher transmission capacities from existing copper cables, e.g. with the technique of vectoring, in order to avoid the cost of laying down fiber cables to the premises. This, however, is more and more seen only as a temporary solution, which cannot satisfy further growth of bandwidth demand.

− Telecom Windows

Optical fiber communications typically operate in a wavelength region corresponding to one of the following “telecom windows”:
  • The first window at 800–900 nm was originally used. GaAs/AlGaAs-based laser diodes and light-emitting diodes (LEDs) served as transmitters, and silicon photodiodes were suitable for the receivers. However, the fiber losses are relatively high in this region, andfiber amplifiers are not well developed for this spectral region. Therefore, the first telecom window is suitable only for short-distance transmission.
  • The second telecom window utilizes wavelengths around 1.3 μm, where the loss of silica fibers is much lower and the fibers' chromatic dispersion is very weak, so that dispersive broadening is minimized. This window was originally used for long-haul transmission. However, fiber amplifiers for 1.3 μm (based on, e.g. on praseodymium-doped glass) are not as good as their 1.5-μm counterparts based on erbium. Also, low dispersion is not necessarily ideal for long-haul transmission, as it can increase the effect of optical nonlinearities.
  • The third telecom window, which is now very widely used, utilizes wavelengths around 1.5 μm. The losses of silica fibers are lowest in this region, and erbium-doped fiber amplifiers are available which offer very high performance. Fiber dispersion is usually anomalous but can be tailored with great flexibility (→ dispersion-shifted fibers).
The second and third telecom windows are further subdivided into the following wavelength bands:
BandDescriptionWavelength range
O bandoriginal1260–1360 nm
E bandextended1360–1460 nm
S bandshort wavelengths1460–1530 nm
C bandconventional (“erbium window”)1530–1565 nm
L bandlong wavelengths1565–1625 nm
U bandultralong wavelengths1625–1675 nm
The second and third telecom windows were originally separated by a pronounced loss peak around 1.4 μm, but they can effectively be joined with advanced fibers with low OH content which do not exhibit this peak...linestelecom@gmail.com

No comments: